4.10 Definición de diferencial.
Definición de diferencial
Eun diferencial se refiere a un cambio infinitesimal en una variable y a la forma en que afecta a una función. Es un concepto central en el cálculo diferencial y puede entenderse desde dos perspectivas:
Geometría y cálculo diferencial:
El diferencial de una función en un punto representa la aproximación lineal del cambio en debido a un cambio pequeño en . Matemáticamente, se define como:Donde:
- es un cambio infinitesimal en la variable .
- es el cambio correspondiente en basado en la pendiente , que es la derivada de .
Interpretación práctica:
En términos simples, el diferencial proporciona una herramienta para analizar cómo una pequeña variación en la entrada de una función afecta su salida. Esto es útil en aplicaciones como física, ingeniería y economía para aproximar valores y entender relaciones entre variables.
El concepto de diferencial es clave en múltiples áreas, como la optimización, el análisis de errores y la resolución de problemas relacionados con tasas de cambio.
Consideremos la siguiente ilustración en donde aproximamos a la función f por su recta tangente.

Considerando que la recta tangente es la mejor aproximación lineal a la gráfica de f en las cercanías del punto de tangencia PT, si le llamamos
a la variación de f cuando x varía de xo a xo + h y
a la variación de la recta tangente en el mismo rango de variación en x, podemos afirmar que para valores de h "cercanos" a 0, estas dos variaciones son muy parecidas, es decir, D f @ D RT .
Podemos expresar a D RT en términos de h y el ángulo q que forma la recta tangente con el eje de las abscisas. En el triángulo de la figura, que extraemos a continuación, se observa lo siguiente:

![]()
En virtud de que D RT es un aproximador de la DIFERENCIA D f, lo definiremos como EL DIFERENCIAL DE f en el punto xo, con respecto al incremento h y lo denotaremos por df, es decir,
df = f '(xo)h
Observación: El diferencial, en general depende de h y del punto xo. Por ejemplo el diferencial de f(x) = x2 es:
df = f ' (xo)h = (2xo)h
que también lo podemos expresar como:
d(x2) = (2xo)h
Si especificamos el punto xo, el diferencial dependerá únicamente de h, como se aprecia en los siguientes ejemplos:
a) El diferencial de f(x) = x2 en xo =3 es d(x2) = 6h
b) El diferencial de f(x) = x2 en xo =7 es d(x2) = 14h
c) El diferencial de f(x) = x3 en xo =2 es d(x3) = 12h
En el caso de la función identidad f(x) = x, como f '(xo) = 1 para todo xo, su diferencial nos queda como df = f '(xo)h = h o bien dx = h
Como h es el diferencial de la función identidad, podemos re-escribir el diferencial de una función f derivable en xo, como:
df = f '(xo)dx
Esta expresión nos dice que la variación de una función f es aproximadamente proporcional a la variación de su variable independiente, donde la constante de proporcionalidad es la derivada en el punto en cuestión.
En los siguientes ejemplos estimaremos la variación D f para xo y h dados y la compararemos con el diferencial.
Ejemplo . Verifique que:
a) Para f(x) = x2 se cumple que D f @ df en xo = 1 y h = 0.1
Solución:
D f = f(1.1) - f(1) = 1.21 - 1 = 0.21
df = f ' (1)dx =(2x|x=1 )(0.1) = (2)(0.1) = 0.20
La variación real difiere de la aproximada en una centésima.
Observación: El punto xo + h es un punto cercano a xo, que se encuentra a la derecha de éste si h es positivo y a la izquierda si h es negativo. En el siguiente ejemplo consideraremos un incremento negativo.
Comentarios
Publicar un comentario